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Abstract The hyperspherical method is a widely used
and successful approach for the quantum treatment of
elementary chemical processes. It has been mostly
applied to three-atomic systems, and current progress
is here outlined concerning the basic theoretical frame-
work for the extension to four-body bound state and
reactive scattering problems. Although most applica-
tions only exploit the advantages of the hyperspherical
coordinate systems for the formulation of the few-body
problem, the full power of the technique implies rep-
resentations explicitly involving quantum hyperangular
momentum operators as dynamical quantities and hy-
perspherical harmonics as basis functions. In terms of
discrete analogues of these harmonics one has a univer-
sal representation for the kinetic energy and a diago-
nal representation for the potential (hyperquantization
algorithm). Very recently, advances have been made
on the use of the approach in classical dynamics, pro-
vided that a hyperspherical formulation is given based
on “classical” definitions of the hyperangular momenta
and related quantities. The aim of the present paper
is to offer a retrospective and prospective view of the
hyperspherical methods both in quantum and classical
dynamics. Specifically, regarding the general quantum
hyperspherical approaches for three- and four-body sys-
tems, we first focus on the basis set issue, and then
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1 Introduction

The theoretical study of the internal and reactive dynam-
ics of molecules and of aggregates of atoms and mole-
cules is assisted by models and techniques based upon
both quantum and classical mechanics. The rigorous
quantum treatment of the dynamics is currently prohib-
itive for systems involving more than three or possibly
four atoms, and the extension of quantum techniques
to few-body dynamics, such as the study of elementary
reaction and scattering processes involving electrons,
atoms, simple molecules, ions, and small clusters, for
which a full quantum treatment is yet a considerable
challenge, requires the development of proper formula-
tions and perhaps the use of efficient approximations.

The dynamics of larger systems, e.g., that of clus-
ters and polyatomic reactions, is typically tackled by
classical mechanics. In these cases, two general clas-
ses of methods can be distinguished: a first one based
on the numerical integration of the classical equations
of motion, leading to constant total energy trajectories
for sampling of the phase space of the system (a mi-
crocanonical picture), and a second one based on ran-
dom techniques for statistical sampling of the phase
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space enabling to calculate dynamical and thermody-
namical quantities. These random walk or Monte Carlo
techniques are mainly devoted to constant tempera-
ture canonical simulations but their application to con-
stant energy simulations (random walks at constant total
energy) is also feasible.

Approximations to the quantum formalism, or intro-
duction of quantum features within a classical frame-
work (the semiclassical approaches) are avenues of
intensive current research. We will however not consider
them in this paper, where we confine our attention to
recent progress in the exact quantum treatment of few-
body dynamics through the hyperspherical and related
techniques, and to developments that these techniques
have obtained when carried over to classical mechanics.

The plan of the paper is as follows. General con-
cepts and formulations are introduced in Sect. 2, where
we illustrate the quantum hyperspherical approach for
three- and four-body systems, with the emphasis on
details of the construction of the symmetric hyperspher-
ical harmonic basis sets. Section 3 discusses the hyper-
spherical approach to classical mechanics, the central
topic here is kinetic energy partitions revealing the rel-
ative role of various modes of motion in the evolution
of the system. Section 4 concludes the paper.

2 The quantum hyperspherical approach

We will now recall some basic details, which are intro-
ductory to the subject of the present paper. Concerning
the reactive dynamics of atomic and molecular systems,
the time-independent hyperspherical approach has been
successfully applied to the three-body quantum reactive
scattering problem [1–4], and its extension to the chal-
lenging four-body case is currently being investigated
[5–11]. This approach is widely acknowledged as the one
providing the benchmarks for accurate time-indepen-
dent state-to-state reactive scattering calculations and
relies upon the use of the hyperspherical coordinate sys-
tem, which can be thought of as a generalization of the
familiar spherical coordinates for specifying the position
of a point in the three-dimensional physical space.

2.1 Radial and angular modes

Within the hyperspherical coordinate framework, the
configuration of a system made up of N ≥ 3 particles
is represented as a point in a (3N − 3)-dimensional
hyperspace (after the separation of the center-of-mass
motion), and its kinematics is equivalent to that of one
body of mass M (the total mass of the system) on the
(3N − 4)-dimensional surface of a sphere embedded in

the (3N − 3)-dimensional space. The size of this hyper-
sphere depends on a hyperradius, denoted as ρ (the
analogue of the radius of a two-dimensional sphere in
the three-dimensional space), while the other key rel-
evant quantity is the so-called grand angular momen-
tum [12–14], denoted as �. In quantum mechanics, the
corresponding grand angular momentum operator �̂2

appears in the kinetic energy part T̂ of the quantum
Hamiltonian operator written in terms of hyperspheri-
cal coordinates. The operator T̂ is split into two parts,
a hyperradial operator T̂ρ and a grand angular momen-
tum operator T̂�, as follows:

T̂ = − 1
2M

(
h̄2

ρ3N−4

∂

∂ρ
ρ3N−4 ∂

∂ρ
− �̂2

ρ2

)
= T̂ρ + T̂�. (1)

In many other versions of this equation, one uses the
reduced mass of the system

µ =
(

m1m2 · · · mN

m1 + m2 + · · · + mN

)1/(N−1)

instead of the total mass

M = m1 + m2 + · · · + mN

(m1, m2, . . . , mN being the masses of individual parti-
cles); the presence of µ in Eq. (1) requires just another
mass scaling of ρ. The expression in Eq. (1) in parenthe-
ses is the Laplace operator (multiplied by h̄2) in terms of
hyperspherical coordinates. The simplest separation of
variables is thus obtained by virtue of the hyperspher-
ical formulation of the N-body quantum Hamiltonian
operator, and is the analogue of the separation into
the radial part and the angular momentum part of the
Laplacian acting in the three-dimensional Euclidean
space. As a consequence of this variable separation, the
kinetic energy is partitioned into a radial energy contri-
bution T̂ρ and an angular energy contribution

T̂� = �̂2

2Mρ2 . (2)

The grand angular momentum is an invariant quan-
tity, in the sense that it does not change under the
action of orthogonal transformations in the configura-
tion and momentum spaces. Indeed, there are many pos-
sible explicit expressions for �̂2, each corresponding to
an alternative set of hyperspherical coordinates.

As discussed in detail in many references (see for
example our papers [15,16]), the hyperspherical coordi-
nates are introduced as a parametrization on the hyper-
sphere of the N − 1 Jacobi or related type vectors for
the N-particle system. The simplest set of Jacobi vectors
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can be constructed by taking as the first vector (with
a choice for the vector orientation) the one connecting
particles 1 and 2, then the vector connecting the center
of mass of particles 1 and 2 to particle 3, and so on. A
proper mass scaling of the vectors will complete the con-
struction procedure. Note that the choice of these vec-
tors is not unique. For example, for a three-body A+BC
reactive system three alternative vector pairs can be set
up, accounting for the three different rearrangement
channels of reactants and products [3,15]. The represen-
tation in terms of the Jacobi vectors is particularly con-
venient for reactive scattering problems of three (and
four) bodies in the atom–diatom (and diatom–diatom
or atom–triatom) case, where the asymptotic configura-
tions at long distance between the atom and diatom (or
the two diatoms, or the atom and triatom) correspond to
a separable Hamiltonian which reduces to the situation
of one or two independent oscillators (or one free atom
plus a triatom). Such a representation is advantageous
for the enforcing of the asymptotic conditions. For a
review of alternatives, and for recent developments, see
Refs. [17,18].

The Schrödinger equation whose solutions contain
all the physics of the system is set up by adding to the
kinetic energy operator T̂ a term representing the inter-
action potential of the system. To recast the problem in
an algebraic fashion, one expands the unknown wave
function in terms of a basis function set. The basis set
of paramount importance is given by the zero potential
eigenvalue problem solutions. The elements of this set
are the eigenfunctions of the kinetic energy part T̂ of the
Hamiltonian operator, which is naturally separated, as
already mentioned, into a hyperradial part and a grand
angular momentum part, see Eq. (1). It is customary
to proceed by fixing the hyperradius ρ in Eq. (1) and
looking for the solutions of the grand angular momen-
tum eigenvalue problem. The corresponding eigenfunc-
tions are called hyperspherical harmonics, in analogy
with the well-known spherical harmonics, and describe
the motion of a free particle on the surface of the hyper-
sphere [16]. The general eigenvalue equation is

�̂2Fλ = (λ − 3N − 5)Fλ, (3)

where Fλ indicates the hyperspherical harmonics labeled
by the grand angular momentum quantum number λ.
The solutions constitute a complete orthonormal set of
functions that satisfy the relation〈
Fλ

∣∣ Fλ′ 〉 = δλλ′ .

In fact, the labels of the harmonics include, beside the
grand angular momentum quantum number λ, quan-
tum numbers related to various hyperangular momenta

and their projections along a quantization axis. This is
worked out in the given references and sketched below.

The alternative variants of the hyperspherical coordi-
nates correspond to the various choices for the param-
etrization of the Jacobi vectors on the hypersphere. In
this context the natural choice, for explicit definition of
the coordinates, is the simple extension of the canonical
spherical parametrization for the general (3N − 3)-
dimensional case, that leads to the so-called asymmetric
hyperspherical coordinates, whose harmonics are
known, under very general conditions, in closed form
[16]. This choice, which is of great interest for bound
state and elastic or inelastic processes, can be unsatis-
factory for reactions, since each rearrangement channel
(e.g., A + BC, B + CA, C + AB for the three-body
case) corresponds to a different Jacobi coupling scheme.
Therefore, the standard asymmetric parametrization
would lead to a channel-dependent coordinate system,
namely the coordinate system explicitly dependent on
the initial Jacobi coupling scheme, typically the one for
the reactant entrance channel. The role of the entrance
arrangement would then be overemphasized, while in
a reactive event all the channels may play a specific
role. Mathematically this leads to poor convergence with
respect to the product exit channels. Using simulta-
neously the sets for entrance and exit channels leads
to non-orthogonality and overcompleteness problems.
There are important examples demonstrating how the
latter difficulties can be overcome successfully [19,20].

However, the problem can be tackled adopting a
specific alternative to the Jacobi vector parametriza-
tion known as the symmetric parametrization [5,16] that
treats all the channels “democratically” and, even if
the corresponding harmonics are not always known in
closed form, has very interesting features to be exploited
in reaction dynamics. This type of parametrization is
considered in this paper. In the following we will some-
times refer to symmetric hyperspherical coordinates as
simply hyperspherical.

The choice of the symmetric hyperspherical coordi-
nates leads to a framework in which the 3N − 3 con-
figuration variables (separating out the motion of the
center of mass) are broken up into three ordinary exter-
nal rotation coordinates, under the form of Euler angles
α, β, γ specifying the orientation of the system, and
internal coordinates (three in the case of three bodies
and six in the case of four bodies) [21,22]. Among the
internal coordinates, we have the hyperradius ρ, i.e.,
the radius of the hypersphere, and two angles 	 and ϕ

which determine the shape and the inertia distribution
with respect to the three principal inertia axes [23] (in
the three-body case, the angle ϕ is absent). The remain-
ing angular variables (one for three bodies, three for
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four bodies, and 3N −9 in general for N ≥ 4) are the so-
called internal or kinematic rotation angles {�ι} [9,22].
These angles parametrize rotations in the (N−1)-dimen-
sional kinematic space (N−1 is the number of the Jacobi
vectors) that smoothly connect all the different Jacobi
coupling schemes (channels) and make the symmetric
hyperspherical coordinates independent of the many
possible choices of the arrangements, so to deserve for
these coordinates the attribute “democratic”. The kine-
matic angles can be thought of as the minimal variable
set performing all the possible permutations of particles
and of groups of particles, and correspond therefore to
particle exchange. The size and shape coordinates ρ, 	,
and ϕ are invariant under internal kinematic rotations
[7,10] as well as under external rotations and are often
referred to simply as invariants.

As already pointed out, the choice of a symmetric or
democratic parametrization of the hyperspherical coor-
dinates corresponds to just one of the many possibilities,
which lead to different explicit forms for �̂2. Differ-
ent alternatives for parametrizing the Jacobi vectors are
associated with distinct sets of hyperspherical harmon-
ics, which are in turn simultaneous eigenfunctions of cer-
tain sets of commuting quantum mechanical operators.
The operator �̂2 is common to all the sets, with quantum
number λ, see Eq. (3). In what follows we will consider
specifically the harmonics corresponding to the symmet-
ric hyperspherical coordinates, which are simultaneous
eigenfunctions of the following set of commuting oper-
ators:

�̂2, Ĵ2, K̂2, Ĵz, K̂z′ ,

where �̂2 is again the grand angular momentum oper-
ator, Ĵ2 and Ĵz are the orbital angular momentum of
the nuclear motion in the body-fixed frame and its pro-
jection along a preferred z-axis, respectively, K̂2 is the
kinematic angular momentum operator, and K̂z′ is its
commuting z′-projection within the kinematic space.

Since the commuting operators are not as many as the
number of angular variables (for N ≥ 4), one expects
the eigenfunctions of �̂2 to be degenerate. The desired
functions are obtained as the sums of degenerate har-
monics over the redundant labels:

FλJK
MJMK

=
∑

J=−J,...,J

∑
{K}

∣∣JMJJ
〉∣∣KMK{K}〉GλJK

J{K},

(4)

where the J-labeled ket functions are Wigner functions
depending on the three Euler rotation angles, while the
K-labeled ket functions are, in general, kinematic rota-
tion eigenfunctions depending on the kinematic rotation

angles {�ι} and on a set of quantum numbers {K}.
Recall that the number of these angles is equal to 1 =
3N − 8 for N = 3 and to 3N − 9 for N ≥ 4. The G
functions depend on 	 and ϕ (on 	 only for N = 3).
The functions FλJK

MJMK
in Eq. (4) constitute the optimal

complete orthonormal basis set for quantum dynamics
calculations in hyperspherical coordinates, at a fixed hy-
perradius ρ. Here and henceforth, one should not con-
fuse the total mass M of the system with the projections
MJ , MK of angular momenta.

Most of the theoretical studies in quantum reaction
dynamics adopt the Born–Oppenheimer separation,
with only the lowest electronic state taken into account
and with the dynamics controlled by a single potential
energy surface (PES) [2,3]. In the present paper we are
assuming a single PES as well, and thus a scalar poten-
tial energy function V = V(ρ, λ) of the hyperspherical
coordinates. This function depends, in general, on the
hyperradius ρ and the complete set of hyperangles, col-
lectively denoted as λ. In any case, the choice of the
basis set of hyperspherical harmonics is the crucial step
for successfully implementing the quantum hyperspher-
ical method, and it is important to consider the basis
efficiency in reducing the number of functions required
to obtain a prescribed numerical convergence as well
as the fundamental issue of possible frame singularities
[21,22].

2.2 Hyperspherical harmonics for the three-body
quantum problem

In the three-body case, one has to solve the eigenvalue
problem related to the following total nuclear motion
Hamiltonian operator, looking for the total wavefunc-
tion �JM that must be an eigenfunction of the total
angular momentum J and its projection along the quan-
tization axis in the space-frame (here and henceforth, we
set h̄ = 1 and omit the hats over operators of momenta
for simplicity):

Ĥ = T̂ + V̂ = − 1
2M

(
1
ρ5

∂

∂ρ
ρ5 ∂

∂ρ
− �̂2

ρ2

)
+ V(ρ, λ).

As before, here �̂2 is the grand angular momentum
operator [12–14] and V(ρ, λ) is the potential energy
function. The explicit expression for �̂2 is

�̂2 =�̂2
0 + 4J2

z

sin2 2	
+ J2

y

cos2 2	
+ J2

x − J2
z

cos2 	
− 2i sin 2	

cos2 2	
Jy

∂

∂�
,

(5)
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where

�̂2
0 = − 1

sin 4	

∂

∂	
sin 4	

∂

∂	
− 1

cos2 2	

∂2

∂�2

and the Ji, i = x, y, z, are the total nuclear rotational
angular momentum operators in the body-frame. In
Eq. (5), one recognizes the Coriolis term

−2i sin 2	

cos2 2	
Jy

∂

∂�

that couples external and internal rotations [2,3]. The
total wavefunction �JM is expanded as

�JM =
∑
iK

fiK(ρ)�iK,

where the fiK are radial functions depending on ρ and
the �iK are nuclear states depending on 	 and � and
parametrically on ρ, with K the total angular momen-
tum projection on the space-frame and  the projection
on the body-frame. These in turn are factorized as

�iK = FJM
 φiK,

where the FJM
 are eigenfunctions of the total angular

momentum and of its projection. The nuclear vibron-
ic states φiK are taken as the solutions of a restricted
problem[

1
2Mρ2

(
�̂2

0 + 4K2

sin2 2	

)
+ V(ρ, λ)

]
φiK = εiK(ρ)φiK,

where seeking for the φiK at various fixed ρ values is the
core and the most expensive part of the calculations.

To tackle this problem, a basis set is selected given by
the exact analytic solutions of the part

�̂2
0 + 4K2

sin2 2	
,

for which the functions are the hyperspherical harmon-
ics

Y λ
2

σ
2 K =

(
λ + 2

4π

)1/2

d
λ
4
σ
4 − K

2
σ
4 + K

2
(4	)e−iσ�.

Here λ is the grand angular momentum quantum num-
ber which takes even or odd values according to the
parity with respect to the inversion, while σ takes accord-
ingly even or odd values from −λ + 2 to λ − 2. What
should be provided next is the representation of the
Coriolis and the remaining rotational terms in Eq. (5).
All these residual terms are taken into account in the
propagation step [24–27]. We can also record here the
recent paper [17], where elliptic types of hyperspherical
coordinates, first introduced in [16], provide a general
classification of three-body coordinate frames.

2.3 Hyperspherical harmonics for four-body quantum
problems

The four-body hyperspherical coordinates involve, com-
pared with the three-body case, one additional shape
coordinate ϕ and two additional kinematic rotation
angles �ι [5]. The external rotation part and the internal
or kinematic rotation part in the full Hamiltonian oper-
ator are formally identical, and we can introduce a kine-
matic rotation operator K2 (not to be confused with the
total angular momentum projection on the space-frame
in Sect. 2.2), with components K1, K2, and K3, which is
dual to the external angular momentum operator J2. The
kinetic energy operator defining the eigenvalue problem
for the four-body basis functions is [5]

T̂ = − 1
2M

[
1
ρ8

∂

∂ρ
ρ8 ∂

∂ρ
+ �̂ξ (	, ϕ)

ρ2

]

+�̂J2
i ,K2

κ

(
ρ, 	, {�ι}

) + �̂Ji,Kκ

(
ρ, 	, {�ι}

)
with i = x, y, z and κ , ι = 1, 2, 3; for the explicit expres-
sion of T̂ see Refs. [5,6]. Here ρ−2�̂ξ (	, ϕ) is the invari-
ant coordinate part, while �̂J2

i ,K2
κ

(
ρ, 	, {�ι}

)
involves

the squares of the components of two (the external and
internal) angular momenta, whose couplings are in the
Coriolis term �̂Ji,Kκ

(
ρ, 	, {�ι}

)
. The total kinetic energy

wavefunction (the solution for the zero potential case)
can be represented as follows [9,28,29]:

�λJK
nk =

∑
n′,m

|Jn′n〉|Kkm〉GλJK
n′m ,

where the labels are the total external angular momen-
tum J, the grand angular momentum quantum number λ

(see Sect. 2.1), and the total kinematic angular momen-
tum K. The kinematic rotation part is, as remarked
above, formally identical to the ordinary rotation part.
The |Kkm〉 kinematic rotation functions are therefore
similar to the |Jn′n〉 external rotation functions, namely
symmetrized Wigner d-functions [3,9], with the require-
ment that the |Kkm〉 have to be symmetrized with
respect to the V4 group and also with respect to the
exchange of identical particles (a full treatment of this
issue has been given in Ref. [9]). The hard work in deal-
ing with four-body harmonics is the search for the GλJK

n′m
functions, which depend on the invariants ρ, 	, ϕ. We
should solve the eigenvalue problem for the operator

− �̂ξ (	, ϕ)

2Mρ2 + �̂J2
i ,K2

κ

(
ρ, 	, {�ι}

) + �̂Ji,Kκ

(
ρ, 	, {�ι}

)
.

What has been achieved so far is obtaining solutions
for this problem in the reduced case of zero external
and internal angular momenta. We found it convenient
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to represent the three-dimensional space (ρ, 	, ϕ) of
kinematic invariants as a Cartesian space with axes ξ1,
ξ2, and ξ3. As a consequence of this choice and of the
assumed zero value for the angular momenta, the prob-
lem is rewritten as(

∇2 + 2
D1/2

∇D1/2∇
)

Gλ00
00 = EGλ00

00 ,

where E generically represents the eigenvalue,

D = (ξ2
2 − ξ2

1 )(ξ2
3 − ξ2

1 )(ξ2
3 − ξ2

2 )

is the volume element, ∇ and ∇2 are the standard Euclid-
ean gradient and Laplace operators with respect to the
ξ ’s, and G depends on ξ1, ξ2, and ξ3. It can be shown
[7,10] that this equation may be solved in the zero energy
limit giving the right result for the G’s:(

∇2 + 2
D1/2

∇D1/2∇
)

Gλ00
00 = 0.

It has been also proven that the solutions G have to
enjoy the Oh symmetry and that only symmetry selected
values are permitted for λ [7,10]. The G functions are
then obtained in the form of harmonic polynomials of
degree λ and eigenvalue E = (λ + 3)(λ + 4) [7] in the
(ξ1, ξ2, ξ3) Cartesian space. The angular parametrization
of the harmonic polynomials is then found by simply
splitting off a factor ρλ. The degeneracy of the solutions
for a given λ is also known [7,10,30].

In summary, the feasibility of the hyperspherical
approach for four-body reactive systems relies upon
availability of harmonic sets for the expansion of eigen-
functions. Although these sets can be generated numer-
ically [8], analytic subsets will presumably be of decisive
help. As for the case of three bodies of Sect. 2.2, one will
have to separate out Coriolis type terms, to be eventually
accounted for in the propagation step.

3 Hyperspherical formulation of classical mechanics
and energy partitions for cluster dynamics

Present efforts in developing a hyperspherical approach
to classical dynamics are motivated by the central role
that classical simulations play in the study of large sys-
tems, where quantum methods are out of feasibility. The
aspect that we exploit to build up a hyperspherical view
of the N-body classical motion problem is the geometry
of the hyperspherical configuration space spanned by
the 3N − 3 degrees of freedom of the system. Consid-
eration will later be given also to the momentum space,
and thus to the full phase space.

As already pointed out in Sect. 2.1, in the symmetric
or democratic version of the quantum N-body problem,

the hyperspherical coordinates are divided into groups
consisting of three ordinary external rotation degrees of
freedom, three (or two for N = 3) size-shape or iner-
tial degrees of freedom, and 3N − 9 (or 3N − 8 = 1
for N = 3) kinematic rotations angles. Furthermore, the
size-shape coordinates can in turn be divided into the
hyperradius ρ and two angles 	 and ϕ (the latter angle
is absent for N = 3). The coordinate subgroups span
subspaces according to a similar decomposition of the
configuration space. During the motion, the system sam-
ples its available phase space with a given total energy,
while each subgroup of degrees of freedom samples its
own subspace.

The classical kinetic energy can be given a similar
decomposition, which means to assign the proper energy
contribution to each of the subgroups of degrees of free-
dom. For any given subgroup, the term of the decom-
position will be the energy contribution associated with
the mode of the motion represented by the correspond-
ing coordinates. The sum of all the contributions, plus
eventually couplings among them, will define a partition
of the kinetic energy. In what follows we will illustrate
the practical application of this idea, aiming at giving
a precise definition of the meaning of “mode” in this
context.

A hyperspherical formulation of classical mechan-
ics would be simply achieved by rewriting the classical
Cartesian Hamiltonian function in terms of hyperspher-
ical coordinates. The result would be an analogue of the
quantum hyperspherical Hamiltonian operator except
for some so-called extra terms [31], not appearing in
the classical Hamiltonian, of inherent quantum nature,
which arise from non-commuting operators. The obvi-
ous further step would be the integration of the classi-
cal hyperspherical equations of motion. This could be
done by direct integration of the hyperspherical equa-
tions. However, the presence of singularities at poles,
corresponding to spherical and symmetric top config-
urations, makes it not really convenient to proceed in
that way, and definitely not competitive with established
ways of integrating the equations of motion in Cartesian
coordinates.

Circumventing direct integration, we obtain expres-
sions for calculating the quantities appearing in the
kinetic energy partition (that we know could be found
from the hyperspherical view of classical mechanics)
from the Cartesian coordinates and velocities. The key
point in the hyperspherical formulation of classical
mechanics is that, similarly to the quantum case, the clas-
sical kinetic energy for a given N-body system is the sum
of terms that can be conveniently grouped to represent
contributions dependent on clearly identified subgroups
of degrees of freedom and corresponding to well-defined
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and physically meaningful modes of the motion. The
coupling terms (possibly negative) can also be grouped
and collectively treated as a residual contribution to the
total kinetic energy. A small residual energy will then
indicate a good separation of the various modes. In the
following we will illustrate the partitions starting from
some further details about the coordinates. To be defi-
nite, we will assume N ≥ 4, the simplifications for N = 3
are straightforward.

3.1 Hyperspherical coordinates from the singular value
decomposition

As already pointed out in Sect. 2.1, the symmetric hyper-
spherical coordinates for an N-body system can be intro-
duced from the Cartesian components of the n = N − 1
Jacobi vectors. To operate on these components, a 3 × n
matrix Z is introduced, containing column-wise the
Jacobi vectors. The suitable mathematical tool here is
the so-called singular value decomposition of matrices
[31–34]. The theorem states that, for any given 3 × n
matrix Z, there exists a decomposition into the product
of three matrices as follows:

Z = D�Xt (6)

(the superscript t means matrix transposing), where
D ∈ O(3) is a 3 × 3 orthogonal matrix, X ∈ O(n) is
an n × n orthogonal matrix, and � is a 3 × n matrix with
all the entries zero except for the diagonal entries ξ1,
ξ2, ξ3, which can be (and generically are) non-zero and
satisfy the inequalities

ξ1 ≥ ξ2 ≥ ξ3 ≥ 0

(recall that we assume N ≥ 4 and hence n ≥ 3). In
fact, the factors D and X in Eq. (6) can be chosen to be
special orthogonal: D ∈ SO(3), X ∈ SO(n), except for
the case where n = 3 and det Z < 0. The three ξ ’s can
be thought of as the three components of a Cartesian
vector (compare with Sect. 2.3), that can be parame-
trized in a three-dimensional space by the hyperradius
and two angles. The ξ ’s are called the singular values of
the matrix Z and are uniquely determined, while the two
factors D and X are not. In the three-body case (n = 2),
one has only two singular values.

The total kinetic energy T of the system is obtained
from the time derivative Ż of Z as [33,34]

T = M
2

Tr
(
ŻŻt), (7)

where M is as before the total mass of the system (and
Tr means the matrix trace). Recall that the quantity

Tr
(
ŻŻt), i.e., the sum of the squares of all the 3n entries

of Ż, is known as the square of the Frobenius norm of
the matrix Ż [32,34]. In our outline of the hyperspheri-
cal formulation of classical dynamics, the square of the
Frobenius norm of any matrix denoted as Ż〈symbols〉 or
Ż〈symbols〉 will represent always an energy contribution,
see Sect. 3.4.

The 3 × 3 orthogonal matrix D in Eq. (6) is charac-
terized by three parameters, corresponding to the three
Euler angles describing ordinary rotations in the phys-
ical space, while the n × n orthogonal matrix X is to
be parametrized by 3n − 6 angles �ι, corresponding to
the kinematic rotation angles (see Sect. 2.1). Of course,
matrices in SO(n) are parametrized in general by n(n −
1)/2 variables, but for n ≥ 4 only the first three columns
of the matrix X are really involved in Eq. (6). The singu-
lar values ξ ’s play the role of size and shape coordinates,
and can be shown to be related to the hyperradius as
[7,9,23,31,33–35]

ρ2 = ξ2
1 + ξ2

2 + ξ2
3 = Tr(ZZt) (8)

and to the principal moments of inertia I1, I2, and I3 of
the system with respect to the center of mass as

I1 = M(ξ2
1 + ξ2

2 ), I2 = M(ξ2
1 + ξ2

3 ), I3 =M(ξ2
2 + ξ2

3 ).

Since the hyperradius is the square root of the sum of
the squares of the singular values, it is related to the
total inertia I = I1 + I2 + I3 of the system through
I = 2Mρ2. Two further angles 	 and ϕ complete a
spherical parametrization (as anticipated in the previous
exposition) of the three ξ ’s taking ρ as the radius. This
is convenient for separating out the hyperradius whose
evolution, along with the angular energy associated with
	 and ϕ (an appropriate angular momentum Lξ can be
defined), contribute to the ξ variations. For details con-
cerning the singular value decomposition applied to the
symmetric hyperspherical coordinates, see Ref. [34].

3.2 The hyperspherical partition: hyperangular
momenta

The hyperspherical partition is the simplest way of par-
titioning the energy of the system, inspired by the hy-
perspherical coordinate representation. Such a partition
results from the integration of the equations of motion in
hyperspherical coordinates and involves contributions
to the total kinetic energy coming from the various hy-
perangular momenta. However, we avoid direct integra-
tion of the equations of motion and merely define the
various kinetic energy terms, according to the grouping
of the degrees of freedom that naturally arises while
introducing the symmetric hyperspherical coordinates.
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Following such a procedure, one can determine
contributions to the kinetic energy from the hyperra-
dius variation ρ̇ and the hyperangular momenta corre-
sponding to ordinary and kinematic rotations, denoted
as J and K, respectively (compare with Sect. 2.1). An
energy term accounting for the total angular motion can
be calculated from the grand angular momentum �. In
addition, an angular momentum Lξ will be defined as
a measure of the energy contribution from the angular
motion of the three size-shape coordinates, the ξ ’s, also
parametrized in terms of ρ, 	, and ϕ.

Let us now give the explicit and rigorous definitions of
the above mentioned quantities [33,34]. The key angu-
lar characteristic, the grand angular momentum �, can
be thought of as a generalization of the standard three-
component angular momentum vector and is defined
from the matrices Z and Ż as follows:

�2 = M2
∑

1≤i,j≤3

1≤α,β≤n
i<j or i=j, α<β

(
ZiαŻjβ − ZjβŻiα

)2, (9)

where M is as before the total mass of the system while
Ziα denote the entries of the coordinate matrix Z, with
Greek column-indices identifying the Jacobi vectors and
row-indices i, j identifying their components. The energy
contribution due to the grand angular momentum, the
grand angular energy T�, will be

T� = �2

2Mρ2 ,

compare with the corresponding quantum mechanical
relation of Eq. (2).

From the linear momentum conjugated to the hyper-
radius

Pρ = Mρ̇ = Mρ−1 Tr
(
ZŻt), (10)

the hyperradial energy Tρ accounting for the overall
breathing of the system follows as

Tρ = P2
ρ

2M
= Mρ̇2

2
.

As in quantum mechanics (see Sect. 2.1), the hyperradi-
al and grand angular energies define the so-called Smith
decomposition [12,33,34], the simplest partition of the
kinetic energy:

T = Tρ + T�, (11)

compare with Eq. (1).

The three ordinary external rotation variables, with
which the total angular momentum J can be associated,
support the physical rotation energy term

TJ = J2

2Mρ2 .

The quantity dual to the ordinary angular momentum J
is the kinematic hyperangular momentum K, accounting
for kinematic rotations. It is convenient to think of K
as the angular momentum of the rows of the matrix Z,
instead of the columns. So, while J is the total angular
momentum of the n three-dimensional column-vectors
of the coordinate matrix, K will be the total angular
momentum of the three n-dimensional row-vectors, and
its square is obtained as

K2 =
∑

1≤α<β≤n

K2
αβ , Kαβ = M

3∑
i=1

(
ZiαŻiβ −ZiβŻiα

)
, (12)

along with the corresponding energy term TK

TK = K2

2Mρ2 .

Since the kinematic rotations act in the kinematic space
(the space of the three n-dimensional row-vectors of Z),
the result of their action, as perceived from the three-
dimensional physical space, is the mixing of correspond-
ing components of different vectors, an operation that,
for definite sets of values of the kinematic angles �ι,
should be understood as particle permutations. Indeed
the physical interpretation of kinematic rotations is the
particle exchange, while in terms of Jacobi vectors, kine-
matic rotations are transformations that continuously
interpolate all the possible Jacobi coupling schemes.

The angular component of the motion associated with
variations of the vector (ξ1, ξ2, ξ3), in the three-dimen-
sional Cartesian ξ -space, is measured by the singular
angular momentum Lξ as follows:

L2
ξ

/
M2 = (

ξ1ξ̇2 −ξ2ξ̇1
)2 + (

ξ1ξ̇3 −ξ3ξ̇1
)2 + (

ξ2ξ̇3 −ξ3ξ̇2
)2,

(13)

and the corresponding energy term is

Tξ = L2
ξ

2Mρ2 .

The energy terms introduced above represent the
contributions to the kinetic energy from distinct groups
of degrees of freedom and the corresponding modes of
the motion. In other words, this is a proposal of a sep-
aration scheme, and we are now proceeding to a brief
discussion on the existence and role of coupling terms.
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These terms can be included by introducing an angular
coupling energy Tac, accounting collectively for coupling
terms contributing to the total kinetic energy T. Since
the latter, as well as the terms T�, Tρ , TJ , TK, and Tξ , are
explicitly given, Tac is defined as the (possibly negative
[34]) difference

Tac = T − Tρ − Tξ − TJ − TK = T� − Tξ − TJ − TK,

in such a way that a small value of |Tac| indicates well
separated modes. The latter would mean that the
description based upon the hyperspherical view is fit
to model the system. Finally the sum of the terms giving
the total kinetic energy T will be

T = Tρ + Tξ + TJ + TK + Tac, (14)

representing the so-called hyperspherical partition.

3.3 Invariance properties

All the hyperspherical quantities presented by now, the
hyperradius ρ, the singular values ξ ’s of the matrix Z, the
grand angular momentum �, the “partial” (hyper)angu-
lar momenta J, K, Lξ , and the corresponding energy
terms appearing in Eqs. (11) and (14), are instantaneous
phase-space invariants, namely they are invariant under
orthogonal coordinate transformations in both the phys-
ical space and the kinematic space. The details and a rig-
orous derivation of the invariance properties for all the
hyperspherical characteristics are reported in Ref. [34].
Below we sketch some proofs of the invariance features
for the various kinetic energy terms.

From Eq. (6) it follows that

DtZZtD = ��t = diag(ξ2
1 , ξ2

2 , ξ2
3 ),

so that the squares of the ξ ’s are the eigenvalues of the
3 × 3 square matrix ZZt. Applying a rotation in the
physical space represented by a matrix R ∈ SO(3) and a
rotation in the kinematic space represented by a matrix
Q ∈ SO(n), one arrives at the new coordinate matrix
Z′ = RtZQ. The matrices ZZt and

Z′(Z′)t = RtZZtR

are similar and possess therefore the same eigenvalues.
Obviously, this conclusion will remain true if one con-
siders, more generally, an arbitrary orthogonal transfor-
mation in the physical space represented by a matrix
R ∈ O(3) and an arbitrary orthogonal transformation in
the kinematic space represented by a matrix Q ∈ O(n).
We have thus proven the invariance of the singular val-
ues ξ1, ξ2, ξ3 under orthogonal coordinate transforma-
tions of any kind.

This reasoning can be proceeded in a “dual” way.
Namely, Eq. (6) implies also that

XtZtZX = �t� = diag

⎛
⎝ ξ2

1 , ξ2
2 , ξ2

3 , 0, 0, . . . , 0︸ ︷︷ ︸
n − 3 zeros

⎞
⎠ ,

so that the eigenvalues of the n × n square matrix ZtZ
are ξ2

1 , ξ2
2 , ξ2

3 , 0, 0, . . . , 0. Again, the invariance of the ξ ’s
follows immediately from the fact that the matrices ZtZ
and

(Z′)tZ = QtZtZQ

are similar, where

Z′ = RtZQ, R ∈ O(3), Q ∈ O(n). (15)

In the sequel, we will always use the notation of Eq. (15)
assuming that R and Q are time-independent.

Now Eq. (8) gives the invariance of the hyperradius ρ

and consequently of its time derivative ρ̇. Alternatively,
the invariance of ρ̇ follows from Eq. (10), because of the
similarity of the matrices ZŻt and

Z′(Ż′)t = RtZŻtR.

Hence, the hyperradial energy Tρ is also invariant under
all the orthogonal coordinate transformations in both
the physical space and the kinematic space. Besides that,
Eq. (13) implies the invariance of the singular angular
momentum Lξ and of the corresponding energy term
Tξ . The invariance of the total kinetic energy T of the
system is obvious from Eq. (7), since the matrices ŻŻt

and

Ż′(Ż′)t = RtŻŻtR

are similar. Taking into account the Smith decomposi-
tion of T, see Eq. (11), one obtains the invariance of the
grand angular energy T� and consequently of the grand
angular momentum � defined by Eq. (9).

The invariance property of the (hyper)angular
momenta J and K is a more subtle issue. It is not hard
to see that the three components Jx, Jy, Jz of the ordi-
nary angular momentum J are related to the coordinate
matrix Z and its time derivative Ż as

M
(
ZŻt − ŻZt) =

⎛
⎝ 0 Jz −Jy

−Jz 0 Jx

Jy −Jx 0

⎞
⎠ ,

so that

J2 = J2
x + J2

y + J2
z =

∣∣∣∣ 0 Jz

−Jz 0

∣∣∣∣ +
∣∣∣∣ 0 −Jy

Jy 0

∣∣∣∣ +
∣∣∣∣ 0 Jx

−Jx 0

∣∣∣∣
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is equal to the sum of the three 2 × 2 principal minors of
the matrix M

(
ZŻt − ŻZt). Replacing Z with Z′, we will

get a similar matrix

M
(
Z′(Ż′)t − Ż′(Z′)t) = MRt(ZŻt − ŻZt)R.

Similar matrices share the same characteristic polyno-
mial and hence the same sum of the second order
principal minors. Indeed, for any m × m matrix W, the
coefficient at χm−k (1 ≤ k ≤ m) in the characteristic
polynomial det(W − χ Id) is equal to (−1)m−ksk, where
sk is the sum of all the k × k principal minors of W. The
same can be expressed as follows: the kth elementary
symmetric function of the eigenvalues of W is equal to
sk [32]. One concludes that the angular momentum J
and consequently the corresponding energy term TJ are
invariants.

Analogously, the components Kαβ of the kinematic
angular momentum K, see Eq. (12), appear as the entries
of the matrix M

(
ZtŻ − ŻtZ

)
:

M
(
ZtŻ − ŻtZ

)
αβ

=

⎧⎪⎨
⎪⎩

Kαβ for α < β,

−Kβα for α > β,

0 for α = β,

here 1 ≤ α, β ≤ n. Thus, K2 is the sum of all the n(n−1)/2
second order principal minors of the matrix M

(
ZtŻ −

ŻtZ
)
. Replacing Z with Z′, one obtains a similar matrix

M
(
(Z′)tŻ′ − (Ż′)tZ′) = MQt(ZtŻ − ŻtZ

)
Q.

In the same way as in the case of J, this implies the
invariance of the kinematic angular momentum K and
consequently of the corresponding energy term TK.

Finally, the invariance of the angular coupling energy
Tac follows immediately from its definition and the
invariance of the terms T, Tρ , Tξ , TJ , TK, see Eq. (14).

3.4 The projective partition

The projective partition of the total kinetic energy of
a system of classical particles has been developed in
[33,34] with the aim of improving the separability of the
various modes of the motion. To ensure this the mathe-
matical definition of the partition terms, compared with
the hyperspherical partition of Eq. (14), has been mod-
ified and a geometric projection procedure has been
introduced, which is explained below.

The basic idea can be presented as follows. The coor-
dinate matrix Z of the system belongs to the space of
3 × n matrices in which the Frobenius inner product
[32,34] of any two matrices Za and Zb can be defined as

Tr
(
Za(Zb)t) =

3∑
i=1

n∑
α=1

Za
iαZb

iα .

As we already pointed out, the total kinetic energy T is
the square of the Frobenius norm of the matrix Ż (up to
a factor of M/2), see Eq. (7). Now imagine the matrix Ż
to be the sum of matrices Żι:

Ż =
∑

ι

Żι, (16)

so that

2T
M

=Tr

(∑
ι

Żι

∑
ι

Żt
ι

)
=

∑
ι

Tr
(
ŻιŻt

ι

)+2
∑
ι<κ

Tr
(
ŻιŻt

κ

)
.

(17)

Considering each of the Frobenius products in
Eq. (17) as a kinetic energy term, one has an energy
partition, where the mixed terms are zero if, and only
if, the matrices Żι are pairwise orthogonal. The mixed
terms are therefore a measure of the separability of the
modes corresponding to the various Żι. Therefore, to
find a good partition means, within this scheme, to find
a good decomposition of the matrix Ż.

The next step consists in considering the orbits of the
matrix Z under the action of three orthogonal matrix
groups. These are the group SO(3) of ordinary rotations
in the physical (or external) space, the group SO(n) of
kinematic rotations in the kinematic (or internal) space,
and also their direct product, SO(3)× SO(n). The orbits
will be denoted respectively as �e(Z), �k(Z), and �(Z).
Thus, �e(Z) is the manifold of all the 3 × n matrices of
the form RtZ with R ∈ SO(3) and �k(Z) is the manifold
of all the matrices ZQ with Q ∈ SO(n), while �(Z) con-
tains all the matrices RtZQ. Note that the “left” action
of the group SO(3) and the “right” action of the group
SO(n) in the space of 3 × n matrices commute.

We denote as �e(Z), �k(Z), and �(Z) the tangent
spaces to �e(Z), �k(Z), and �(Z), respectively, at point
Z. The space �e(Z) is constituted by all the 3 × n matri-
ces Z + rtZ with skew-symmetric r ∈ so(3), the space
�k(Z) is constituted by all the matrices Z + Zq with
skew-symmetric q ∈ so(n), and, finally, all the matrices
Z + rtZ + Zq with r ∈ so(3) and q ∈ so(n) constitute
�(Z).

The key point for us is to find matrices Żι in Eq. (16)
mutually orthogonal in order to obtain an efficient sep-
aration of the modes. Accordingly, the energy terms will
have to be given an interpretation as physically moti-
vated motions.

These requirements are best fulfilled if we take as
(some of) matrices Żι the projections (in the sense of the
Frobenius product) of Ż on the tangent spaces we have
just defined. Given a tangent space, one can obtain,
through a projection procedure, two orthogonal



Theor Chem Acc (2007) 117:709–721 719

matrices: the projected component itself plus the orthog-
onal component. The latter will not have any character
of the motion that takes place on the tangent space, and
will represent independent modes. Moreover, both the
energy terms corresponding to these components will
automatically be instantaneous phase-space invariants.
This follows from two easy facts. First, for any R ∈ SO(3)

and Q ∈ SO(n) one has

ϒ(RtZQ) = Rtϒ(Z)Q,

where ϒ denotes any of the varieties �e, �k, �, �e,
�k, �. Second, orthogonal coordinate transformations
in both the physical and kinematic spaces preserve the
Frobenius product:

Tr
(
RtZaQ(RtZbQ)t) = Tr

(
Za(Zb)t)

for any matrices Za, Zb.
Using this approach, one can split the matrix Ż into

two parts

Ż = Żrot + ŻI,

where Żrot accounts for all kinds of rotational motions
(except for those associated with the ξ ’s) and ŻI accounts
for the inertial or size-shape motions. The matrices Żrot

and ŻI are respectively the projected and the orthog-
onal components with the tangent space �(Z) used as
the projection plane. Taking the squares of the Frobe-
nius norms of these matrices, we get the energy terms

Trot = M
2

Tr
(
Żrot(Żrot)t), TI = M

2
Tr

(
ŻI(ŻI)t),

called the rotational energy and the inertial energy,
respectively. The sum of these terms is equal to the
total kinetic energy T. The matrix ŻI does not contain
the rotational motion contributions, and the term TI

must correspond to the energy contribution from the
ξ ’s. Indeed, one can verify [33,34] that

TI = Tρ + Tξ , (18)

so that

Trot = TJ + TK + Tac.

By projection on �e(Z) and �k(Z), a further decom-
position is possible for Ż, giving matrices Że and Żk,
respectively, whose Frobenius norms would provide
(after squaring and multiplying by M/2) the projective
analogues of the terms TJ and TK of the hyperspheri-
cal partition of Eq. (14). These new terms are denoted
as Text and T int and called the external energy and the

internal energy, meaning external and internal rotations,
respectively:

Text = M
2

Tr
(
Że(Że)t), T int = M

2
Tr

(
Żk(Żk)t).

As in the case of the hyperspherical partition, we have
to take into account couplings, which are cumulatively
measured by a (possibly negative [34]) residual energy
term Tres:

Tres = T − Tρ − Tξ − Text − T int

= T� − Tξ − Text − T int = Trot − Text − T int.

Finally, the projective partition of the total kinetic energy,
as a result of the projection procedure that exploits the
geometric properties of the hyperspherical phase space,
can be written as follows:

T = Tρ + Tξ + Text + T int + Tres. (19)

By construction, the matrix ŻI is orthogonal to each
of the matrices Żrot, Że, and Żk:

Tr
(
ŻI(Żrot)t) = Tr

(
ŻI(Że)t) = Tr

(
ŻI(Żk)t) = 0. (20)

It follows from Eqs. (18) and (20) that there is no cou-
plings between the inertial motion modes (associated
with the ξ evolution) and the rotational motion modes
(the external and internal rotations), and that the breath-
ing degree of freedom of the system (connected with ρ̇)
and the two degrees of freedom defined by the rotations
of the vector (ξ1, ξ2, ξ3) give no coupling either. The only
source of couplings in a system of classical particles is the
coupling between the ordinary and kinematic rotations.

Between the projective partition terms and the cor-
responding ones in the hyperspherical partition, there
hold the inequalities [33,34]

TJ ≤ Text, TK ≤ T int,

and consequently

Tres ≤ Tac.

In the presumably frequently occurring case where all
the terms in Eqs. (14) and (19) are positive, this implies
that the couplings in the projective partition do not
exceed (and are generically smaller than) those in the
hyperspherical partition.

4 Summary and outlook

We have confined our presentation to basic issues, leav-
ing out extensive numerical implementations, as well
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as the considerable physical insight associated with the
hyperspherical approach to the N-body problem.
Indeed, one of the characteristic features of this
approach is perhaps that the hyperradius ρ, which is also
a measure of the total inertia of the system and is inde-
pendent of the particular choice of the Jacobi scheme, is
a physically natural reaction coordinate [2,3]. Its small
values correspond to the region of strong interaction,
while at large values it describes the asymptotic rear-
rangement regions corresponding to the reactants and
products. In the hyperspherical method, calculations are
therefore carried out adiabatically with respect to ρ. The
whole range of ρ is conveniently divided into sectors
and for each of them, a ρ-fixed Hamiltonian eigenvalue
problem is solved, yielding adiabatic curves and non-
adiabatic couplings. The ρ dependence is then taken
into account on the second step in which the hyperradi-
al functions are propagated from the strong interaction
region to the large ρ limit, where the scattering matrix
is extracted enforcing the proper boundary conditions.
The choice of hyperspherical coordinates, especially for
reactive scattering problems, is therefore strongly moti-
vated by the availability of a natural, adiabatic, reac-
tion coordinate, and by the central role that angular
momenta and their projections play in all the reactive
processes.

For classical dynamics simulations, the approach will
prove to be useful in assessing the role of the spe-
cific modes of the overall behavior. While in quantum
mechanics the geometric properties of the hyperspheri-
cal configuration space are made manifest and easily rec-
ognized in the factorization of the harmonics as products
of factors depending on subgroups of variables, corre-
spondingly in classical mechanics a most useful result is
the partitioning of the kinetic energy as a sum of con-
tributions depending on the distinct groups of degrees
of freedom. The basic idea is that of considering the
various well-distinct groups of variables—hyperradius,
shape invariants, external and internal rotation angles—
as representative of physically meaningful modes of the
motion. This idea has been fully developed [31,33–35]
and illustrated through the construction of an efficient
method for calculating the terms in the partitions of the
kinetic energy. The hyperspherical formulation of the
classical dynamics has been proven to be effective as
an interpreting tool for molecular dynamics simulations
[31,35–38]. These simulations show that in many cases,
one indeed has 0 < Tres � Tac.

It is worthwhile to mention that some insight in reveal-
ing additional features of the dynamics of reactive sys-
tems comes from the statistical analysis of the adiabatic
ρ-dependent energy levels [39–41]. For the hyperspher-
ical approach, a study can be done of the energy levels

of the ρ-fixed problem as functions of the hyperradius
ρ. A case study has been performed for the reactive
process F + H2 → H + HF. We examined spectral prop-
erties, such as the level spacings standard deviation σ

and the shape of the nearest neighbor spacing distribu-
tion (NNSD), evaluating the q parameters of the Brody
and Berry–Robnik distributions, which are alternative
interpolations between the Poisson and the Wigner dis-
tributions. We also applied statistical tools, such as the
so-called �̃(m) test (which is analogous to the �3(L) test
of Dyson and Mehta but less computationally expen-
sive) and the correlation coefficient C(r). This analysis,
which is typical of current investigations on the topic
of “quantum chaos”, gives insight into the nature of the
reactive event and may be useful for the development of
statistical theories in molecular dynamics, complemen-
tary to the purely classical view presented in Sect. 3.

While further developments of the few-body quan-
tum hyperspherical approach to dynamics will probably
come from the efforts devoted to build up an efficient
time-independent quantum method for four-body inter-
actions, on the classical mechanics side, we expect a more
extensive use of the hyperspherical representation (so
far largely unexplored in that context) for problems of
the dynamics of nanoaggregates usually tackled by a
Cartesian representation.
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